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The Evaluation of Centroid Lattice Parameter Data for Tungsten
by the Likelihood Ratio Method*

By KarL E. BeUu

(Received 13 February 1963 and in revised form 2 October 1963)

The likelihood ratio method (LRM) was used to determine 30, the maximum likelihood estimate
of a, for tungsten under the hypothesis of ‘no remaining systematic errors’ in the Bragg angle
measurements. @, was determined using centroid Bragg angle and systematic error correction
data for tungsten powder. These data were kindly supplied by Dr B. W. Delf of Prof. A. J. C.
Wilson’s laboratory. The data were further used to evaluate various characteristics of the LRM
related to lattice parameter precision and accuracy.

Wave length accuracy is not included in the discussion since the LEM can be used only to evaluate
the precision and accuracy of the Bragg angle measurements corrected for systematic errors other
than wave length. This problem, however, can be essentially by-passed by stating the centroid
wave length value, albeit fictitious, which is used in the Bragg equation to calculate a given lattice
parameter value. This centroid wave length would have truncation limits equivalent to the angular
truncation limits used in calculating the centroid values for the diffraction profiles.

The Wi test function of the LRM indicated that all six systematic error corrections used by
Delf were necessary and sufficient to remove the systematic errors within the precision of measure-
ment. The é; test function indicated a slight discrepancy in the angular scale correction for the

110 reflection; however, this discrepancy was insufficient to affect the accuracy of 30 based on the
value of W, obtained when using all six corrections. This analysis of the tungsten data indicates
that the Wy, and é; test functions of the LRM are adequate in providing accurate lattice parameter
estimates as well as in determining real or potential difficulties in systematic error correction
procedures.

G, was compared to extrapolated a, values for Delf’s uncorrected centroid data. With the use of
a cot § extrapolation because of the predominating zero error correction, the extrapolated a, value
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was found to differ significantly (about ten times the 959, confidence limits on 50) from 30.

Introduction

The likelihood ratio method (LRM) is a statistical
method which indicates when an accurate lattice para-
meter value has been attained after the systematic
errors have been removed from the data within the
precision of the Bragg angle measurements (Beu, Musil
& Whitney, 1962; hereafter designated reference I).
The LRM was originally developed for crystals of
cubic symmetry but has been extended to include
tetragonal and hexagonal crystals (Beu, Musil &
Whitney, 1963).

The LRM is not an extrapolation method nor does
it assess the accuracy of the wave length value used
in the Bragg equation. As long as the same wave
length value (peak, centroid, or other suitable feature
of the characteristic wave length distribution) is
used by all concerned, the wave length and Bragg
angle accuracy problems can be handled separately.
In the case of centroid Bragg angle determinations,
this further implies that the truncation limits (wave
length range) used for the centroid wave length value

* This work was performed under Contract AT-(33-2)-1
with the U.S. Atomic Energy Commission.

in the Bragg equation are equivalent to the truncation
limits used for calculating the centroid angles from the
diffraction profile data.}

The LRM is based on evaluating the internal
consistency of the Bragg angle measurements for
a given sample and is concerned only with the precision
and accuracy of these measurements corrected for

1 A difficulty arises here since centroid wave lengths and
their truncation limits have not yet been published. Other
problems, such as the effect of filters on the wave length
distribution in the vicinity of the characteristic radiation of
interest, which actually reaches the sample, also arise. Until
such problems are solved and centroid wave length data
become available, it is suggested that a fictitious centroid
wave length value be used; ¢.e., the weighted mean K« wave
length, designated Ayuwary-Agwnr) could then be defined as
that centroid wave length which has truncation limits cor-
responding to the Bragg angle truncation limits. It would,
of course, be necessary to choose self-consistent angular
truncation limits of sufficient width so that truncation error
is minimized and so that the same value of Agwary would
apply to each centroid Bragg angle value. In addition, it
would be necessary to specify in detail the truncation procedure
used in determining the limits. Following this procedure
based on Aywaz), two or more observers may compare lattice
parameter data and ascribe differences to factors other than
wave length, factors which are responsive to the LRM.
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all systematic errors except wave length or wave-
length-dependent factors such as the kX-to- Angstrém
conversion (Lonsdale, 1950) or that part of the
refraction correction due to wave length change within
the crystal (Wilson, 1940).

Briefly, the LRM is based on the concept that a
function (e;) related to the systematic error remaining
in a Bragg angle measurement (y;) is related to the
true, but unknown, value of the Bragg angle (6;) by
the equation:

€i=Yi— 0: .

The hypothesis (H) is then made that there are
‘no remaining systematic errors’ in the y; after the y;
have been corrected for systematic errors; e.g.,
H: e;=0. Based on this hypothesis, a likelihood ratio
function (W) is derived* which can be shown to be
distributed like chi-squaret according to a theorem
in statistics (Mood, 1950a). The extent of systematic
error removal from the y; is determined by comparing
Wn with w,, a critical value of the chi-square distribu-

* Wpn is the minimum value of W(a,).

. 0,)2
W(ag) = Zn; In [1+ (‘”’_2‘)—]
where : i i
n; represents the number of measurements of the ¢th Bragg
angle;

s; is the standard deviation estimate of ;.
1
8% = — Z(pia— )2
nix

(Note that n; is used instead of (n;— 1) in calculating s;2.
This is a consequence of maximum likelihood estimation.)
Yia is the ath measurement of the ¢th angle.

T Chi-square is & distribution used for testing hypotheses.
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tion. If Wn > w,, the hypothesis is rejected; on the
other hand, if Wn<w,, the hypothesis is accepted,
at the ¢ significance level, that there are ‘no remaining
systematic errors’ in the corrected y; values. In this

case 30, the maximum likelihood estimate of @¢o under
the hypothesis, has been determined (see, for example,
Mood (19500) for a discussion of maximum likelihood

estimation). @ corresponds to the value of Wy ob-
tained in a plot of ag versus W{ao) as will be illustrated
in the example to be given in this paper. For further
details see reference 1.

In addition to providing the estimate @o, the LRM
can be used to determine the validity of a given
systematic error correction procedure in terms of the
W and é; (maximum likelihood estimate of e;) test
functions. W, provides a measure of the over-all
effect of a given systematic error correction on all
the measured Bragg angles while ¢; indicates if a
given correction to a given Bragg angle measurement
is valid. Only if W, and é; decrease after applying
a given correction can it be said that that correction
is significant and useful.

Using the LRM, do was calculated (reference I)
from the Bragg angle of Bond (1960), for a silicon
single crystal, and was shown to be precise and
accurate to one part in 390,000 [2o=5430736+
0-000014 A (95% confidence limits for 12 measure-
ments on three diffraction peaks) at 25 °C and based
on a Cu Kx; wave length of 1-540510 A]. Bond’s data
were obtained with a symmetrical diffractometer
(measurements made on both sides of zero and 180° 26).
The LRM demonstrated that only one of the three
calculated corrections used by Bond was significant

Table 1. Delf’s centroid data for tungsten corrected to 18 °C

hkl 110 211 310 321
Average 20 (measured) 39-5012 724716 99-9392 130-6092
Average f =y; (uncorrected) 19-7506 36-2358 49-9696 65-3046
n; (number of measurements) 7 7 9 8
8% (6°)2 60-9 x 10-8 29-9x 10-8 758x 108 602 x 10-8
s: (8°) 0-0008 0-0006 0-0009 0-0025
Truncation limits* (angular range, 6°) 0-80 0-94 1-48 2-42
Corrections (°26)
Correction code number

hikl 1 2 3 4 5 6

110 +0-7675 +0-0053 +0-0080 +0-0160 0 —=0-0015

211 +0-7675 +0-0045 +0-0039 + 0-0050 0 +0-0039

310 +0-7675 +0-0036 +0-0391 0 0 —0-0003

321 +0-7675 +0-0023 +0-0212 —0-0074 —0-0050 —0-0020

Code No. Type of correction

Zero

[« W I VU O

Specimen-surface displacement

Flat specimen

Vertical divergence

Dispersion, Lorentz and polarization
Angular scale

(The transparency error was taken as zero for all lines)
* Truncation method described by Delf (1963).
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Fig. 1. W(a,) versus a, for Delf’s data on tungsten (various combinations of systematic error corrections).

and this correction (refraction) was sufficient to reduce
Wm below w,, thereby permitting the determination
of 30.

This article presents a further evaluation of the
LEM based on centroid Bragg angle data for tungsten
which were kindly supplied by Dr B. W. Delf. The
centroid method used by Delf was developed largely
in Prof. A.J. C. Wilson’s laboratory (Wilson, 1950;
Pike, 1957; Pike & Wilson, 1959; Pike & Hughes,
1959; Delf, 1961, 1963). A summary of Delf’s original
data and systematic error corrections is given in
Table 1. The measured 26 and 6 (or ;) angles are
given to four decimal places based on s;, the standard
deviation estimates for these measurements. s, varied
from 0-0006° to 0-0024° 6 for the four diffraction
lines of tungsten measured by Delf. The data in
Table 1 furnish the basis for the LRM evaluation
to follow.

LRM evaluation of Delf’s centroid data

Evaluation of data in terms of W

Wm was determined for Delf’s uncorrected data
and for his data corrected for various systematic
error combinations as shown in Table 2. W, values
were determined from W(ao) versus ao curves similar
to those given in Fig. 1 for some of the error correction
combinations listed in Table 2. W,, was reduced from
252 for no corrections to 239 + 1 for corrections No. 2
to 6 taken one at a time and to 109 for correction
No. 1 (see Table 1 for coding of error corrections).
Each correction reduced W,,, which indicates that all
six corrections were significant and useful. Correction
No. 1 was apparently the most significant correction
sinee it reduced W, more than any of the other five
ccorrections. This may have been expected since No. 1
was the largest of the six corrections; however,
it was also a constant correction to each measured

centroid value. This demonstrates that the LRM is
sensitive to Bragg angle corrections of constant,
as well as variable, magnitude.

W continued to decrease (Table 2) as corrections
were added one at a time. (Corrections for centroid
data may be combined simply by adding the numerical
values algebraically (Pike & Wilson, 1959).) This
verifies the observation already made that each
correction was significant and useful. After all six
corrections had been applied, Wn, was reduced to 2-503,
a value less than w, for the experimental conditions
used. [w,=7-815 at the 0-05 significance level (cor-
responding to 95% confidence limits) and for three
degrees of freedom (corresponding to the four measured
diffraction profiles). w, was obtained from a table of
chi-square distribution (Hodgman, 1959).] The fact
that W, was less than w, (1) verifies that all six
corrections were not only useful but necessary and
sufficient in removing the systematic errors from
the data within the precision of measurement and
(2) indicates that the assumption of a zero trans-
parency error correction is probably valid (a reason-
able assumption because of the extremely high
absorption of Cu Kx radiation in tungsten).

Table 2. Values of W for various systematic error
corrections to measured i values

Corrections* W
None 252
2,3,4,5,0or6 239+1
1 109
143 90-3
1+2+3 80-0
14+24+3+4 28-2
1+42+4+3+4+5 20-5
1+2+3+446 895
—_ 7-815=w,
1+424+3+4+5+6 2-503

* See Table 1 for correction code.
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Table 3. Effect of No. 5 (dispersion, Lorentz and polarization) correction on Wn

Tungsten reflections

Correction used 110 211 310 321 Won
y; corrected for 20-1483 36-6282 50-3746 65-6954 8:95
1+2+3+4+6,6°
No. 5 correction, §° 0-0000 0-0000 0-0000 —0-0025 —
y; corrected for 20-1483 36-6282 50-3746 65-6929 2-503

14243444645, 6°

o corresponding to W,=2-503 was found to be
3-164944 + 0-000018 A (95% confidence limits based
on 31 measurements on four diffraction profiles)*
for TUCr tungsten powder at 18 °C, uncorrected for
refraction,t and using a fictitious centroid wave length,
namely the weighted mean Cu K, Agwar) =1-541760 A,
with a wave length range of 0-018 A (the method of
truncation is described by Pike & Wilson (1959)7).

This value of @ is precise and accurate to about one
part in 180,000 based on the stated qualifications.§

The sensitivity of the LEM to small but necessary
corrections is indicated by observing the decrease in
Wn when the No.5 correction (dispersion, Lorentz
and polarization) is applied last (Table 3). The No. 5
correction is very small (zero for three reflections and
—0-0025° § for the fourth). By applying all corrections
except the No. 5, W, =895 (larger than w,); on the
other hand, including the No.5 correction reduced
Wn to 2:503 (smaller than w,). Thus, the No.5
correction is necessary to reduce Wy below w, even
though it seems to be relatively insignificant, numer-
ically.

* The 95% confidence limits (959% L.E.) are calculated

based on sz, an estimate of the standard deviation of &,;
959% L.E.= +1-96 54. (See page 1153 for the equation for s4,.)

1 The refraction correction for powders is primarily due
to the wave length change within the crystallites (Wilson, 1940)
and, in this case, is applied as a correction to 50 after 50 has
been determined using the LRM.

i This procedure has been modified slightly by Delf
(Delf, 1963) and is described in detail by Beu (1964).

§ Note added in proof. — éo calculated at 25°C and cor-
rected for refraction is 3-16519 +0-000018 A (95% confidence
limits). This is to be compared with §=3-165190 A given by
Delf for the same data but calculated in a different manner
(Delf, 1963). Both éo and @ agree within the stated con-
fidence limits.

Evaluation of data in terms of &;

é;’s are maximum likelihood estimates of e; for
which Xe;=0 to the desired number of decimal places.

1
In practice, two estimates of ao are chosen in solving
for two 0:’s using the Bragg equation in the form:
apsin 6;=K;. (K; is used here instead of k; as used
in reference I to avoid confusion with the Miller
index k.) These 8;’s are used to calculate e;’s and
Ze; based on the equation e;=w;—0;. Only two

2
estimates of ao are required such that the correspond-
ing values of Xe; are positive and negative. do cor-

(3

responding to Xe;=0 is then obtained by interpola-
i

tion since ap estimates vary linearly with Ye;. After

do is determined, é&’s and 0i’s are calculated by the
equations: do sin 0;=K; and éi=y;—0..

In general, it was observed that the é’s for the
individual diffraction lines decreased in absolute value
after application of each systematic error correction,
as would be expected if the corrections were valid.
There was one small, but clear-cut, exception to this
observation in that é; for the 110 reflection increased
slightly after application of the No.6 correction
(angular scale).* This effect was observed (Table 4)
whether No. 6 was applied at an early stage of correc-
tion (Group A: 143 corrections) or at the last stage
(Group B: 14+2+3+44+45 corrections). é;’s for the
(110) reflection increased in absolute value from
0-0094 to 0-0101°6 and from 0-0003 to 0-0004°6
for Groups 4 and B, respectively, after applying No. 6.

* Dr Delf had some reservations about the angular scale
correction for the diffractometer he used; however, the LRM
demonstrated that these corrections were essentially of the
proper magnitude.

Table 4. Effect of No. 6 (angular scale) correction on €;

Before applying No. 6

After applying No. 6

Group Corrections é; (6°) Corrections é; (0°) hkl
A 143 —0-0094 1+3+6 —0-0101 110
—0-0046 —0-0026 211

+-0:0015 +0-0014 310

+0-0124 +0-0114 321

B 142434445 +0-0003 1+24+3+4+54+6 —0-0004 110
—0-0018 +0-0001 211

+0-0001 —0:0001 310

+0-0014 +-0-0004 321
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On the other hand, all of the é;’s for the other three
reflections decreased in absolute value or remained
the same after applying No. 6 to either Group 4 or B.

The No. 6 correction for the 110 reflection thus
seems to be slightly incorrect, but not sufficiently
so as to affect W adversely since W, decreased when
No. 6 was applied to all the measured lines. The data
in Table 4 illustrate the utility of the é; function in
pinpointing potential (and, presumably, real) diffi-
culties when making systematic error corrections to
individual diffraction lines.

As a final note about the é;’s, it is of interest to
compare corresponding ¢é; values between Groups
A and B. The large decrease in é; for a given diffrac-
tion line after many corrections are applied becomes
immediately apparent.

Comparison of do, Qo, Saq, and Aag

do and @o have been previously defined. The differ-
ence between these estimates of ap is related to the
systematic error remaining in the Bragg angle measure-
ments. It is interesting to note that the difference

between do and ao for the ‘all correction’ case is less

than sq,,1 an estimate of the standard deviation of ao,
only when W, <w,. In this case, the two estimates are:

@ = 3164944 2 A (W, = 2-503)
do = 3-1649437 A (X¢é;= 0-0000° 0)

Difference  0-000000 5 A

and sg,=0-000009 A. This explicitly illustrates that
the systematic errors have been removed from the
data within the precision of measurement when
Wm<w, since sq, is about twenty times as large as
the difference between do and ao.

The magnitude of sq, (based on n; measurements of
m diffraction lines for a total of N measurements

1=m
where N = X n;) is comparable to the precision
i=1
obtainable by making N measurements at the highest
Bragg angle alone based on the widely used equation
for precision of ao: |Aaol=ao cot 68|46|. s4,, however,
has the added advantage of providing a standard
deviation estimate of @, a quantity which has been
tested for both precision and accuracy, while |Aao|
is only a measure of precision of an ao which is not
necessarily an accurate value based on the internal
consistency of the Bragg angle measurements.
For Delf’s data, the highest angle measured was
130-6° 20 (65-3° ) and this angle was measured with
a precision of $(21)=0-0025° § per measurement. In

T 8% = aozlﬂ(niléﬁ) tan? éi .
t ~ P
This equation is solved for sgy using: G, sin U;=K; where
Ki=nAy(R2+k2+12)/2 (for cubic materials) and 52 =
852+ (s — 0:)2.

E. BEU
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this case |A4ao|=0-000063 A per measurement. Since
Delf made a total of 31 measurements on four reflec-
tions, the precision per 31 measurements is |A4ao|/}/(31)
=0-000011 A and thisis comparable to s4,=0-000009 A.

Comparison of extrapolated values of ao with o for
tungsten

It is of some interest to compare o with ao values
obtained by extrapolation methods. Since the largest
systematic error is the zero correction, the appropriate
extrapolation function is cot 8 (International Tables
for X-ray Crystallography, 1959). Fig.2 shows an
extrapolation plot of ao wversus cot  for Delf’s un-
corrected data. The data fit a straight line very closely
and the extrapolated value of @y agrees remarkably

well with @ in spite of the fact that the highest 6 value
used was only 65-3°. On a larger graph than Fig. 2,
it can be seen that the extrapolated ao value actually
differs from @o by about ten times the 95%, confidence
limits of 30, indicating that ao and 20 are significantly
different. Correcting the data for all systematic errors
except zero error caused no significant change in the
extrapolated value of ao; i.e., % and ao still differ
by about ten times the 95% confidence limits of ao.
This may indicate that the cot 6 function is not
entirely adequate in removing the effects of zero error
from these data by extrapolation or that the highest
available angle (65-3° 0) was not high enough for a
satisfactory extrapolation.

If the data are corrected for all six systematic

errors, the ao values fall within the 959 L.E. for a,
regardless of the extrapolation function used. This is

3-2300

3-2200 //
32100 ,/

3-2000

31900 /’
3-1800 j/

31700
éﬂ = 3-164944+0-000018 A (precision limits smaller than circle)

~~— .
d, (e])irapolate‘d) 3 1645.? A

do

1 1 1
2:000

3-1600

0 0-400 0-800 1-200 1-600

Cot 0

2:4400  2:800

Fig. 2. Cot 0 extrapolation plot for Delf’s uncorrected
data on tungsten.
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Fig. 3. cos? 6 extrapolation plot for Delf’s data corrected for
all systematic errors except specimen-surface displacement.

not surprising since, if systematic errors are properly
eliminated, the data should fall on a straight, horizontal
line within the precision of measurement.

Wilson (1950) has pointed out that Bragg angle
data corrected for all systematic errors except sample
surface displacement from the diffractometer axis of
rotation (S-S displacement error) can be used in a
cos2 § or cos f cot 0 extrapolation to eliminate the
effect of S-S displacement error. To test this, a cos20
extrapolation was made (Fig.3) with Delf’s data
corrected for all except S-S displacement error. In

order to be able to see the 95% L.E. of G, on this graph,
it was necessary to omit the last point (cos? §=0-886).

EVALUATION OF CENTROID LATTICE PARAMETER DATA FOR TUNGSTEN

The other three points fall on a smooth curve
(dotted line) which intersects the ordinate axis within

the 95% L.E. range of dp. With the 321 value as a
pivot point and the 310 and 211 values to fix the
slopes of two extrapolation lines, extrapolated ao
values were found to fall in the range of 3-164915 to
3164935 A with the higher value falling within the
95% L.E. This indicates that the cos? § extrapolation
to eliminate S-S displacement error is valid if used
with caution. On the basis of available data, it seems
that a smooth curve drawn through the experimental
points is also satisfactory.

Thanks are due to Prof. D. R. Whitney for many
helpful discussions and to Frank J.Musil, Phyllis
Fustanio, William Butler, Mrs Mary Greer, Donald
Scott, and Verlin Webb who carried out the numerous
calculations involved.
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